Nonlinear Dynamics and Chaotic Phenomena : An Introduction
Dordrecht : Springer Netherlands : Imprint: Springer, 2014
Abstract/Sommario:
This book starts with a discussion of nonlinear ordinary differential equations, bifurcation theory and Hamiltonian dynamics. It then embarks on a systematic discussion of the traditional topics of modern nonlinear dynamics -- integrable systems, Poincaré maps, chaos, fractals and strange attractors. The Baker’s transformation, the logistic map and Lorenz system are discussed in detail in view of their central place in the subject. There is a detailed discussion of solitons centered a ...; [leggi tutto]
Campo | Valore |
---|---|
Descrizione | Nonlinear Dynamics and Chaotic Phenomena : An Introduction / by Bhimsen K. Shivamoggi. - 2nd ed. 2014. - Dordrecht : Springer Netherlands : Imprint: Springer, 2014. - XXVII, 375 p. 122 illus ; online resource. - (Fluid Mechanics and Its Applications ; 103) |
Specifiche |
|
Note |
1 Nonlinear Ordinary Differential Equations -- 1.1 First-order Systems -- 1.1.1 Dynamical System -- 1.1.2 Lipschitz Condition -- 1.1.3 Gronwall’s Lemma -- 1.1.4 Linear Equations -- 1.1.5 Autonomous Equations -- 1.1.6 Stability of Equilibrium Points -- 1.1.6.1 Liapunov and Asymptotic Stability -- 1.1.6.2 Liapunov Function Method -- 1.1.7 Center Manifold Theorem -- 1.2 Phase-plane Analysis -- 1.3 Fully Nonlinear Evolution -- 1.4 Non-autonomous Systems -- 2 Bifurcation Theory -- 2.1 Stability and Bifurcation -- 2.2 Saddle-Node, Transcritical and Pitchfork Bifurcations -- 2.3 Hopf Bifurcation -- 2.4 Break-up of Bifurcations under Perturbations -- 2.5 Bifurcation Theory of One-Dimensional Maps -- 2.6 Appendix: The Normal Form Reduction -- 3 Hamiltonian Dynamics -- 3.1 Hamilton’s Equations -- 3.2 Phase Space -- 3.3 Canonical Transformations -- 3.4 The Hamilton-Jacobi Equation -- 3.5 Action-Angle Variables -- 3.6 Infinitesimal Canonical Transformations -- 3.7 Poisson’s Brackets -- 4 Integrable Systems -- 4.1 Separable Hamiltonian Systems -- 4.2 Integrable Systems -- 4.3 Dynamics on the Tori -- 4.4 Canonical Perturbation Theory -- 4.5 Komogorov-Arnol’d-Moser Theory -- 4.6 Breakdown of Integrability and Criteria for Transition to Chaos -- 4.6.1 Local Criteria -- 4.6.2 Local Stability vs. Global Stability -- 4.6.3 Global Criteria -- 4.7 Magnetic Island Overlap and Stochasticity in Magnetic Confinement Systems -- 4.8 Appendix: The Problem of Internal Resonance in Nonlinearly-Coupled Systems -- 5 Chaos in Conservative Systems -- 5.1 Phasse-Space Dynamics of Conservative Systems -- 5.2 Poincar´e’s Surface of Section -- 5.3 Area-preserving Mappings -- 5.4 Twist Maps -- 5.5 Tangent Maps -- 5.6 Poincar´e-Birkhoff Fixed-Point Theorem -- 5.7 Homoclinic and Heteroclinic Points -- 5.8 Quantitative Measures of Chaos -- 5.8.1 Liapunov Exponents -- 5.8.2 Kolmogorov Entropy -- 5.8.3 Autocorrelation Function -- 5.8.4 Power Spectra -- 5.9 Ergodicity and Mixing -- 5.9.1 Ergodicity -- 5.9.2 Mixing -- 5.9.3 Baker’s Tranformation -- 5.9.4 Lagrangian Chaos in Fluids -- 6 Chaos in Dissipative Systems -- 6.1 Phase-Space Dynamics of Dissipative Systems -- 6.2 Strange Attractors -- 6.3 Fractals -- 6.3.1 Examples of Fractals -- 6.3.2 Box-Counting Method -- 6.4 Multi-fractals -- 6.5 Analysis of Time Series Data -- 6.6 The Lorenz Attractor -- 6.6.1 Equilibrium Solutions and Their Stability -- 6.6.2 Slightly Supercritical Case -- 6.6.3 Existence of an Attractor -- 6.6.4 Chaotic Behavior of the Nonlinear Solutions -- 6.7 Period-Doubling Bifurcations -- 6.7.1 Difference Equations -- 6.7.2 The Logistic Map -- 6.8 Appendix: The Hausdorff-Besicovitch Dimension -- 6.9 Appendix: The Derivation of Lorenz’s Equations -- 6.10 Appendix: The Derivation of Universality for One-Dimensional Maps -- 7 Solitons -- 7.1 Fermi-Pasta-Ulam Recurrence -- 7.2 Korteweg-deVries Equation -- 7.3 Waves in an Anharmonic Lattice -- 7.4 Shallow Water Waves -- 7.5 Ion-acoustic Waves -- 7.6 Basic Properties of Korteweg-deVries Equation -- 7.6.1 Effect of Nonlinearity -- 7.6.2 Effect of Dispersion -- 7.6.3 Similarity Transformation -- 7.6.4 Stokes Waves: Periodic Solutions -- 7.6.5 Solitary Waves -- 7.6.6 Peridic Cnoidal Wave Solutions -- 7.6.7 Interacting Solitary Waves: Hirota’s Method -- 7.7 Inverse-Scattering Transform Method -- 7.7.1 Time Evolution of the Scattering Data -- 7.7.2 Gel’fand-Levitan-Marchenko Equation -- 7.7.3 Direct Scattering Problem -- 7.7.4 Inverse-Scattering Problem -- 7.8 Conservation Laws -- 7.9 Lax Formulation -- 7.10 B¨acklund Transformations -- 8 Singularity Analysis and the Painlev´e Property of Dynamical Systems -- 8.1 The Painlev´e Property -- 8.2 Singularity Analysis -- 8.3 The Painlev´e Property for Partial Differential Equations -- 9 Fractals and Multi-Fractals in Turbulence -- 9.1 Scale Invariance of the Navier-Stokes Equations and the Kolmogorov (1941) Theory -- 9.2 The β -model for Turbulence -- 9.3 The Multi-fractal Models -- 9.4 The Random-β Model -- 9.5 The Transition to Dissipation Range -- 9.6 Critical Phenomena Perspectives on the Turbulence Problem -- 10 Exercises -- 11 References -- 12 Index. - Springer eBooks. - Printed edition: 9789400770935
|
Notizie correlate |
|
Autori |
|
Soggetto | |
Classificazione |
|
Lingua | |
Numeri |
|
ID scheda | 139587 |
Permalink | https://opac.inaf.it/?ids=139587 |